Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Eur J Pharmacol ; 973: 176564, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614383

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.


Assuntos
Movimento Celular , Proliferação de Células , Macrófagos , Miócitos de Músculo Liso , Fator de Transcrição STAT3 , Transdução de Sinais , Triterpenos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Animais , Transdução de Sinais/efeitos dos fármacos , Humanos , Fator de Transcrição STAT3/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ratos Sprague-Dawley , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Monocrotalina , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Becaplermina/farmacologia , Remodelação Vascular/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia
2.
World J Gastroenterol ; 30(15): 2143-2154, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38681990

RESUMO

BACKGROUND: Liver fibrosis is a compensatory response during the tissue repair process in chronic liver injury, and finally leads to liver cirrhosis or even hepatocellular carcinoma. The pathogenesis of hepatic fibrosis is associated with the progressive accumulation of activated hepatic stellate cells (HSCs), which can transdifferentiate into myofibroblasts to produce an excess of the extracellular matrix (ECM). Myofibroblasts are the main source of the excessive ECM responsible for hepatic fibrosis. Therefore, activated hepatic stellate cells (aHSCs), the principal ECM producing cells in the injured liver, are a promising therapeutic target for the treatment of hepatic fibrosis. AIM: To explore the effect of taurine on aHSC proliferation and the mechanisms involved. METHODS: Human HSCs (LX-2) were randomly divided into five groups: Normal control group, platelet-derived growth factor-BB (PDGF-BB) (20 ng/mL) treated group, and low, medium, and high dosage of taurine (10 mmol/L, 50 mmol/L, and 100 mmol/L, respectively) with PDGF-BB (20 ng/mL) treated group. Cell Counting Kit-8 method was performed to evaluate the effect of taurine on the viability of aHSCs. Enzyme-linked immunosorbent assay was used to estimate the effect of taurine on the levels of reactive oxygen species (ROS), malondialdehyde, glutathione, and iron concentration. Transmission electron microscopy was applied to observe the effect of taurine on the autophagosomes and ferroptosis features in aHSCs. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to detect the effect of taurine on the expression of α-SMA, Collagen I, Fibronectin 1, LC3B, ATG5, Beclin 1, PTGS2, SLC7A11, and p62. RESULTS: Taurine promoted the death of aHSCs and reduced the deposition of the ECM. Treatment with taurine could alleviate autophagy in HSCs to inhibit their activation, by decreasing autophagosome formation, downregulating LC3B and Beclin 1 protein expression, and upregulating p62 protein expression. Meanwhile, treatment with taurine triggered ferroptosis and ferritinophagy to eliminate aHSCs characterized by iron overload, lipid ROS accumulation, glutathione depletion, and lipid peroxidation. Furthermore, bioinformatics analysis demonstrated that taurine had a direct targeting effect on nuclear receptor coactivator 4, exhibiting the best average binding affinity of -20.99 kcal/mol. CONCLUSION: Taurine exerts therapeutic effects on liver fibrosis via mechanisms that involve inhibition of autophagy and trigger of ferroptosis and ferritinophagy in HSCs to eliminate aHSCs.


Assuntos
Autofagia , Proliferação de Células , Ferroptose , Células Estreladas do Fígado , Cirrose Hepática , Espécies Reativas de Oxigênio , Taurina , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Autofagia/efeitos dos fármacos , Taurina/farmacologia , Ferroptose/efeitos dos fármacos , Cirrose Hepática/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Becaplermina/farmacologia , Becaplermina/metabolismo , Linhagem Celular , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Sobrevivência Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
Clin Exp Pharmacol Physiol ; 51(6): e13867, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684457

RESUMO

Cardiovascular diseases, particularly those involving arterial stenosis and smooth muscle cell proliferation, pose significant health risks. This study aimed to investigate the therapeutic potential of curcumol in inhibiting platelet-derived growth factor-BB (PDGF-BB)-induced human aortic smooth muscle cell (HASMC) proliferation, migration and autophagy. Using cell viability assays, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays and Western Blot analyses, we observed that curcumol effectively attenuated PDGF-BB-induced HASMC proliferation and migration in a concentration-dependent manner. Furthermore, curcumol mitigated PDGF-BB-induced autophagy, as evidenced by the downregulation of LC3-II/LC3-I ratio and upregulation of P62. In vivo experiments using an arteriosclerosis obliterans model demonstrated that curcumol treatment significantly ameliorated arterial morphology and reduced stenosis. Additionally, curcumol inhibited the activity of the KLF5/COX2 axis, a key pathway in vascular diseases. These findings suggest that curcumol has the potential to serve as a multi-target therapeutic agent for vascular diseases.


Assuntos
Arteriosclerose , Proliferação de Células , Músculo Liso Vascular , Miócitos de Músculo Liso , Sesquiterpenos , Animais , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Humanos , Ratos , Arteriosclerose/tratamento farmacológico , Arteriosclerose/patologia , Arteriosclerose/metabolismo , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/citologia , Masculino , Movimento Celular/efeitos dos fármacos , Extremidade Inferior/irrigação sanguínea , Autofagia/efeitos dos fármacos , Ratos Sprague-Dawley , Becaplermina/farmacologia
4.
Biomolecules ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540737

RESUMO

Bone morphogenetic protein (BMP) and platelet-derived growth factor (PDGF) are known to regulate/stimulate osteogenesis, playing vital roles in bone homeostasis, rendering them strong candidates for osteoporosis treatment. We evaluated the effects of recombinant human BMP-7 (rhBMP7) and PDGF-BB (rhPDGF-BB) in an oophorectomy-induced osteoporosis rat model. Forty Sprague Dawley rats underwent oophorectomy surgery; treatments commenced on the 100th day post-surgery when all animals exhibited signs of osteoporosis. These peptide growth factors were administered intraocularly (iv) once or twice a week and the animals were monitored for a total of five weeks. Two weeks after the conclusion of the treatments, the animals were euthanized and tissues were collected for assessment of alkaline phosphatase, X-ray, micro-CT, and histology. The results indicate that the most promising treatments were 20 µg/kg rhPDGF-BB + 30 µg/kg rhBMP-7 twice a week and 30 µg/kg BMP-7 twice a week, showing significant increases of 15% (p < 0.05) and 13% (p < 0.05) in bone volume fraction and 21% (p < 0.05) and 23% (p < 0.05) in trabecular number, respectively. In conclusion, rhPDGF-BB and rhBMP-7 have demonstrated the ability to increase bone volume and density in this osteoporotic animal model, establishing them as potential candidates for osteoporosis treatment.


Assuntos
Proteína Morfogenética Óssea 7 , Osteoporose , Humanos , Ratos , Animais , Becaplermina/farmacologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Proteínas Proto-Oncogênicas c-sis/uso terapêutico , Proteína Morfogenética Óssea 7/farmacologia , Proteína Morfogenética Óssea 7/uso terapêutico , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Proteínas Morfogenéticas Ósseas , Osteoporose/tratamento farmacológico , Proteína Morfogenética Óssea 2
5.
J Biochem Mol Toxicol ; 38(4): e23675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488158

RESUMO

Accumulating evidence shows that the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) can significantly affect the long-term prognosis of coronary artery bypass grafting. This study aimed to explore the factors affecting the proliferation, migration, and phenotypic transformation of VSMCs. First, we stimulated VSMCs with different platelet-derived growth factor-BB (PDGF-BB) concentrations, analyzed the expression of phenotype-associated proteins by Western blotting, and examined cell proliferation by scratch wound healing and the 5-ethynyl-2-deoxyuridine (EdU) assay. VSMC proliferation was induced most by PDGF-BB treatment at 20 ng/mL. miR-200a-3p decreased significantly in A7r5 cells stimulated with PDGF-BB. The overexpression of miR-200a-3p reversed the downregulation of α-SMA (p < 0.001) and the upregulation of vimentin (p < 0.001) caused by PDGF-BB. CCK8 and EdU analyses showed that miR-200a-3p overexpression could inhibit PDGF-BB-induced cell proliferation (p < 0.001). However, flow cytometric analysis showed that it did not significantly increase cell apoptosis. Collectively, the overexpression of miR-200a-3p inhibited the proliferation and migration of VSMCs induced by PDGF-BB, partly by affecting phenotypic transformation-related proteins, providing a new strategy for relieving the restenosis of vein grafts.


Assuntos
MicroRNAs , Músculo Liso Vascular , Becaplermina/farmacologia , Proliferação de Células , Miócitos de Músculo Liso , Fenótipo , MicroRNAs/genética , Movimento Celular , Células Cultivadas
6.
Stem Cell Res Ther ; 15(1): 59, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433209

RESUMO

BACKGROUND: Pericytes are multifunctional contractile cells that reside on capillaries. Pericytes are critical regulators of cerebral blood flow and blood-brain barrier function, and pericyte dysfunction may contribute to the pathophysiology of human neurological diseases including Alzheimers disease, multiple sclerosis, and stroke. Induced pluripotent stem cell (iPSC)-derived pericytes (iPericytes) are a promising tool for vascular research. However, it is unclear how iPericytes functionally compare to primary human brain vascular pericytes (HBVPs). METHODS: We differentiated iPSCs into iPericytes of either the mesoderm or neural crest lineage using established protocols. We compared iPericyte and HBVP morphologies, quantified gene expression by qPCR and bulk RNA sequencing, and visualised pericyte protein markers by immunocytochemistry. To determine whether the gene expression of neural crest iPericytes, mesoderm iPericytes or HBVPs correlated with their functional characteristics in vitro, we quantified EdU incorporation following exposure to the key pericyte mitogen, platelet derived growth factor (PDGF)-BB and, contraction and relaxation in response to the vasoconstrictor endothelin-1 or vasodilator adenosine, respectively. RESULTS: iPericytes were morphologically similar to HBVPs and expressed canonical pericyte markers. However, iPericytes had 1864 differentially expressed genes compared to HBVPs, while there were 797 genes differentially expressed between neural crest and mesoderm iPericytes. Consistent with the ability of HBVPs to respond to PDGF-BB signalling, PDGF-BB enhanced and a PDGF receptor-beta inhibitor impaired iPericyte proliferation. Administration of endothelin-1 led to iPericyte contraction and adenosine led to iPericyte relaxation, of a magnitude similar to the response evoked in HBVPs. We determined that neural crest iPericytes were less susceptible to PDGFR beta inhibition, but responded most robustly to vasoconstrictive mediators. CONCLUSIONS: iPericytes express pericyte-associated genes and proteins and, exhibit an appropriate physiological response upon exposure to a key endogenous mitogen or vasoactive mediators. Therefore, the generation of functional iPericytes would be suitable for use in future investigations exploring pericyte function or dysfunction in neurological diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pericitos , Humanos , Becaplermina/farmacologia , Endotelina-1/farmacologia , Adenosina , Proliferação de Células
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428686

RESUMO

The abnormal proliferation, migration, and inflammation of vascular smooth muscle cells (VSMCs) play crucial roles in the development of neointimal hyperplasia and restenosis. Exposure to inflammatory cytokines such as platelet-derived growth factor (PDGF)-BB and tumour necrosis factor-alpha (TNF-α) induces the transformation of contractile VSMCs into abnormal synthetic VSMCs. Isoxanthohumol (IXN) has significant anti-inflammatory, antiproliferative, and antimigratory effects. This study aimed to explore the therapeutic impact and regulatory mechanism of IXN in treating neointimal hyperplasia. The present findings indicate that IXN effectively hinders the abnormal proliferation, migration, and inflammation of VSMCs triggered by PDGF or TNF-α. This inhibition is primarily achieved through the modulation of the apelin/AKT or AKT pathway, respectively. In an in vivo model, IXN effectively reduced neointimal hyperplasia in denuded femoral arteries. These results suggest that IXN holds promise as a potential and innovative therapeutic candidate for the treatment of restenosis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Necrose Tumoral alfa , Xantonas , Humanos , Hiperplasia/tratamento farmacológico , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Apelina , Movimento Celular , Becaplermina/farmacologia , Neointima/tratamento farmacológico , Neointima/metabolismo , Inflamação
8.
Mol Immunol ; 168: 38-46, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422885

RESUMO

Asthma, a common pediatric pulmonary disease, significantly affects children's healthy development. This study aimed to investigate the functions of human ß defensin-3 (HBD-3) in asthma progression. For this purpose, blood samples from asthmatic and healthy children were collected. Moreover, the airway smooth muscle cells (ASMCs) were treated with platelet-derived growth factor BB (PDGF-BB) to develop an in vitro asthma model, then evaluated cell viability and migration via CCK-8 and transwell assays. The mRNA levels of interferon γ (INF-γ), interleukin 4 (IL-4), interleukin 10 (IL-10), alpha-smooth muscle actin (α-SMA), HBD-3, and the protein levels of phosphatidylinositol 3-kinase (PI3K) along with protein kinase B (AKT) were detected. Similarly, the N6-methyladenosine (m6A) content in the ASMCs and m6A levels of HBD-3 were also measured. Results indicated an upregulated HBD-3 in the asthmatic children. The ASMCs were found to be stimulated by PDGF-BB, in addition to the promotion of cell viability and migration. The INF-γ, IL-4, and α-SMA levels were reduced, while IL-10 was elevated in PDGF-BB-stimulated ASMCs. Silencing HBD-3 in PDGF-BB stimulated ASMCs was found to exert the opposite effect by inhibiting cell viability and migration, enhancing the levels of INF-γ, IL-4, and α-SMA, while the IL-10 levels were found to decline. PDGF-BB stimulation of ASMCs resulted in activation of the PI3K/AKT signaling pathway, which was blocked post HBD-3 silencing, while the role of si-hBD in PDGF-BB stimulated ASMCs was neutralized post-treatment with IGF-1. Finally, it was found that METTL3 overexpression prominently upregulated the m6A levels of HBD-3 and decreased the mRNA expression and stability of HBD-3 in the PDGF-BB-stimulated ASMCs. The study concluded that METTL3-mediated HBD-3 participates in the progression of asthma through the PI3K/AKT signaling pathway.


Assuntos
Asma , Metiltransferases , Miócitos de Músculo Liso , beta-Defensinas , Criança , Humanos , Asma/metabolismo , Becaplermina/farmacologia , Becaplermina/metabolismo , beta-Defensinas/genética , beta-Defensinas/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Pulmão/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais
9.
Atherosclerosis ; 390: 117470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342025

RESUMO

BACKGROUND AND AIMS: Myotubularin-related protein 7 (MTMR7) suppresses proliferation in various cell types and is associated with cardiovascular and cerebrovascular diseases. However, whether MTMR7 regulates vascular smooth muscle cell (VSMC) and vascular intimal hyperplasia remains unclear. We explored the role of MTMR7 in phenotypic switching of VSMC and vascular intimal hyperplasia after injury. METHODS AND RESULTS: MTMR7 expression was significantly downregulated in injured arteries. Compared to wild type (WT) mice, Mtmr7-transgenic (Mtmr7-Tg) mice showed reduced intima/media ratio, decreased percentage of Ki-67-positive cells within neointima, and increased Calponin expression in injured artery. In vitro, upregulating MTMR7 by Len-Mtmr7 transfection inhibited platelet derived growth factor (PDGF)-BB-induced proliferation, migration of VSMC and reversed PDGF-BB-induced decrease in expression of Calponin and SM-MHC. Microarray, single cell sequence, and other bioinformatics analysis revealed that MTMR7 is highly related to glucose metabolism and mammalian target of rapamycin complex 1 (mTORC1). Further experiments confirmed that MTMR7 markedly repressed glycolysis and mTORC1 activity in PDGF-BB-challenged VSMC in vitro. Restoring mTORC1 activity abolished MTMR7-mediated suppression of glycolysis, phenotypic shift in VSMC in vitro and protection against vascular intimal hyperplasia in vivo. Furthermore, upregulating MTMR7 in vitro led to dephosphorylation and dissociation of p62 from mTORC1 in VSMC. External expression of p62 in vitro also abrogated the inhibitory effects of MTMR7 on glycolysis and phenotypic switching in PDGF-BB-stimulated VSMC. CONCLUSIONS: Our study demonstrates that MTMR7 inhibits injury-induced vascular intimal hyperplasia and phenotypic switching of VSMC. Mechanistically, the beneficial effects of MTMR7 are conducted via suppressing p62/mTORC1-mediated glycolysis.


Assuntos
Músculo Liso Vascular , Neointima , Camundongos , Animais , Becaplermina/farmacologia , Becaplermina/metabolismo , Proliferação de Células , Músculo Liso Vascular/patologia , Hiperplasia/patologia , Neointima/metabolismo , Camundongos Transgênicos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Glucose/metabolismo , Miócitos de Músculo Liso/patologia , Movimento Celular , Células Cultivadas , Mamíferos
10.
Eur J Pharmacol ; 968: 176422, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38365108

RESUMO

Vascular smooth muscle cells (VSMCs) contribute to neointimal hyperplasia (NIH) after vascular injury, a common feature of vascular remodelling disorders. Suramin is known to exert antitumour effects by inhibiting the proliferation of various tumour cells; however, its effects and mechanism on VSMCs remain unclear. This study investigated the effects of suramin on human aortic smooth muscle cells (HASMCs), rat aortic smooth muscle cells (RASMCs) and NIH to examine its suitability for the prevention of vascular remodelling disorders. In vitro, suramin administration reduced platelet-derived growth factor type BB (PDGF-BB)-stimulated proliferation, migration, and dedifferentiation of VSMCs through a transforming growth factor beta receptor 1 (TGFBR1)/Smad2/3-dependent pathway. Suramin dramatically inhibited NIH ligation in the left common carotid artery (LCCA) vivo. Therefore, our results indicate that suramin protects against the development of pathological vascular remodelling by attenuating VSMCs proliferation, migration, and phenotypic transformation and may be used as a potential medicine for the treatment of NIH.


Assuntos
Neointima , Suramina , Ratos , Humanos , Animais , Hiperplasia/patologia , Proliferação de Células , Suramina/farmacologia , Suramina/metabolismo , Neointima/patologia , Músculo Liso Vascular , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Remodelação Vascular , Becaplermina/farmacologia , Miócitos de Músculo Liso , Movimento Celular , Células Cultivadas
11.
J Agric Food Chem ; 72(8): 4008-4022, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373191

RESUMO

The vital pathological processes in intimal hyperplasia include aberrant vascular smooth muscle cells (VSMCs) proliferation, migration, and phenotypic switching. Rosmarinic acid (RA) is a natural phenolic acid compound. Nevertheless, the underlying mechanism of RA in neointimal hyperplasia is still unclear. Our analysis illustrated that miR-25-3p mimics significantly enhanced PDGF-BB-mediated VSMCs proliferation, migration, and phenotypic switching while RA partially weakened the effect of miR-25-3p. Mechanistically, we found that miR-25-3p directly targets sirtuin (SIRT6). The suppressive effect of the miR-25-3p inhibitor on PDGF-BB-induced VSMCs proliferation, migration, and phenotypic switch was partially eliminated by SIRT6 knockdown. The suppression of the PDGF-BB-stimulated Nrf2/ARE signaling pathway that was activated by the miR-25-3p inhibitor was exacerbated by the SIRT6 knockdown. In in vivo experiments, RA reduced the degree of intimal hyperplasia while miR-25-3p agomir partially reversed the suppressive effect of RA in vascular remodeling. Our results indicate that RA activates the Nrf2/ARE signaling pathway via the miR-25-3p/SIRT6 axis to inhibit vascular remodeling.


Assuntos
MicroRNAs , Sirtuínas , Humanos , Becaplermina/farmacologia , Proliferação de Células , Hiperplasia/metabolismo , Hiperplasia/patologia , Ácido Rosmarínico , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Remodelação Vascular , Músculo Liso Vascular , Movimento Celular , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso , Células Cultivadas , Sirtuínas/metabolismo , Sirtuínas/farmacologia
12.
Discov Med ; 36(181): 323-331, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409837

RESUMO

BACKGROUND: Childhood asthma is a chronic inflammatory disease of the respiratory tract characterized by bronchial inflammation, airway hyperresponsiveness, airflow disorder, and obstruction. Secreted frizzled-related protein 5 (SFRP5) may be associated with respiratory inflammatory diseases. This study investigated the effect of SFRP5 on human airway smooth muscle cells (HASMCs) to provide new ideas for treating asthma. METHODS: A total of 30 children with asthma and 30 children who had a physical examination at the same time were selected and divided into asthma and healthy groups. Serum SFRP5 levels were determined by enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (RT-qPCR). Lipofectamine 2000™ regent was used to transfect the SFRP5 overexpression plasmid (pc-SFRP5) or corresponding negative control (pc-NC) into HASMCs. HASMCs were treated with 10 µg/L platelet-derived growth factor-BB (PDGF-BB), which is an inducer to mimic the asthma-like condition at the cellular level of childhood asthma. HASMCs were divided into control, PDGF-BB (PDGF-BB treatment), PDGF-BB+pc-NC (pc-NC transfection and PDGF-BB treatment), and PDGF-BB+pc-SFRP5 (pc-SFRP5 transfection and PDGF-BB treatment) groups. Cell proliferation was measured by 5-ethynyl-2'-deoxyuridine (EdU) and cell counting kit-8 (CCK-8) assay. Cell migration was detected by Transwell assay. The protein expression was detected by western blot. RESULTS: Serum SFRP5 expression in the asthmatic group was decreased versus the healthy group (p < 0.0001). Induction of PDGF-BB decreased SFRP5 expression in HASMCs (p < 0.01). SFRP5 expression in the pc-SFRP5 group was increased (p < 0.01). The proliferation and migration of HASMCs increased after PDGF-BB treatment (p < 0.001, p < 0.0001), indicating that the asthma model was successfully inducted in vitro. Moreover, the expression of ß-catenin, cellular-myelocytomatosis viral oncogene (c-Myc), and cyclinD1 proteins in HASMCs increased after PDGF-BB treatment (p < 0.0001). SFRP5 overexpression partly inhibited PDGF-BB-induced proliferation, migration, and expressions of ß-catenin, c-Myc, and cyclinD proteins in HASMCs (p < 0.01, p < 0.001, p < 0.0001). CONCLUSIONS: Serum SFRP5 expression decreases in children with asthma. SFRP5 overexpression partially inhibits PDGF-BB-induced HASMC proliferation and migration by regulating the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt)/ß-catenin pathway.


Assuntos
Asma , beta Catenina , Animais , Criança , Camundongos , Humanos , Becaplermina/metabolismo , Becaplermina/farmacologia , beta Catenina/metabolismo , beta Catenina/farmacologia , Via de Sinalização Wnt/genética , Asma/genética , Asma/metabolismo , Asma/patologia , Proliferação de Células/genética , Pulmão/metabolismo , Movimento Celular , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células Cultivadas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
13.
Cardiovasc Toxicol ; 24(2): 111-121, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38378972

RESUMO

Circular RNA (circRNAs) has been confirmed to participate in atherosclerosis (AS) progression. However, the role and mechanism of hsa_circ_0032389 in AS process still need to be further revealed. This study evaluates the role and mechanism of hsa_circ_0032389 in AS process. Platelet-derived growth factor-BB (PDGF-BB) was used to induce human aortic vascular smooth muscle cells (HA-VSMCs). The expression levels of hsa_circ_0032389, microRNA (miR)-513a-5p, and fibroblast growth factor receptor substrate 2 (FRS2) were examined by quantitative real-time PCR. Cell proliferation and migration were analyzed using cell counting kit 8 assay, flow cytometry, EdU assay, transwell assay, and wound healing assay. Protein expression was assessed using western blot analysis. Dual-luciferase reporter and RIP assays were used to confirm RNA interaction. Hsa_circ_0032389 was overexpressed in PDGF-BB-induced HA-VSMCs, and its downregulation inhibited HA-VSMC viability, cell cycle, EdU positive cell rate, migratory cell number, and wound closure rate under PDGF-BB treatment. The luciferase activity of hsa_circ_0032389wt could be reduced by miR-513a-5p mimic, and both hsa_circ_0032389 and miR-513a-5p were enriched in anti-Ago2, confirming that miR-513a-5p could be sponged by hsa_circ_0032389. MiR-513a-5p inhibitor reversed the effect of hsa_circ_0032389 knockdown on PDGF-BB-induced HA-VSMC viability, cell cycle, EdU positive cell rate, migratory cell number, and wound closure rate. Moreover, the luciferase activity of FRS2wt was reduced by miR-513a-5p mimic, and both FRS2 and miR-513a-5p were enriched in anti-Ago2, verifying that FRS2 was targeted by miR-513a-5p. MiR-513a-5p suppressed PDGF-BB-induced HA-VSMC viability, cell cycle, EdU positive cell rate, migratory cell number, and wound closure rate by targeting FRS2. Our results indicated that hsa_circ_0032389 enhanced PDGF-BB-induced HA-VSMC proliferation and migration via regulating miR-513a-5p/FRS2 axis.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Becaplermina/farmacologia , Músculo Liso Vascular , MicroRNAs/genética , Proliferação de Células , Luciferases , Movimento Celular
14.
Cardiovasc Toxicol ; 24(3): 225-239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324114

RESUMO

Aortic dissection (AD) is a severe vascular disease with high rates of mortality and morbidity. However, the underlying molecular mechanisms of AD remain unclear. Differentially expressed genes (DEGs) were screened by bioinformatics methods. Alterations of histopathology and inflammatory factor levels in ß-aminopropionitrile (BAPN)-induced AD mouse model were evaluated through Hematoxylin-Eosin (HE) staining and Enzyme-linked immunosorbent assay (ELISA), respectively. Reverse transcription quantitative real-time polymerase chain reaction was performed to detect DEGs expression. Furthermore, the role of LILRB4 in AD was investigated through Cell Counting Kit-8 (CCK-8), wound healing, and flow cytometry. Western blotting was employed to assess the phenotypic switch and extracellular matrix (ECM)-associated protein expressions in platelet-derived growth factor-BB (PDGF-BB)-stimulated in vitro model of AD. In the AD mouse model, distinct dissection formation was observed. TNF-α, IL-1ß, IL-8, and IL-6 levels were higher in the AD mouse model than in the controls. Six hub genes were identified, including LILRB4, TIMP1, CCR5, CCL7, MSR1, and CLEC4D, all of which were highly expressed. Further exploration revealed that LILRB4 knockdown inhibited the cell vitality and migration of PDGF-BB-induced HASMCs while promoting apoptosis and G0/G1 phase ratio. More importantly, LILRB4 knockdown promoted the protein expression of α-SMA and SM22α, while decreasing the expression of Co1, MMP2, and CTGF, which suggested that LILRB4 silencing promoted contractile phenotypic transition and ECM stability. LILRB4 knockdown inhibits the progression of AD. Our study provides a new potential target for the clinical treatment of AD.


Assuntos
Dissecção Aórtica , Camundongos , Animais , Humanos , Becaplermina/metabolismo , Becaplermina/farmacologia , Regulação para Baixo , Miócitos de Músculo Liso/metabolismo , Apoptose , Proliferação de Células , Movimento Celular , Células Cultivadas , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
15.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38279304

RESUMO

Cutaneous wound healing consists of four stages: hemostasis, inflammation, proliferation/repair, and remodeling. While healthy wounds normally heal in four to six weeks, a variety of underlying medical conditions can impair the progression through the stages of wound healing, resulting in the development of chronic, non-healing wounds. Great progress has been made in developing wound dressings and improving surgical techniques, yet challenges remain in finding effective therapeutics that directly promote healing. This review examines the current understanding of the pro-healing effects of targeted pharmaceuticals, re-purposed drugs, natural products, and cell-based therapies on the various cell types present in normal and chronic wounds. Overall, despite several promising studies, there remains only one therapeutic approved by the United States Food and Drug Administration (FDA), Becaplermin, shown to significantly improve wound closure in the clinic. This highlights the need for new approaches aimed at understanding and targeting the underlying mechanisms impeding wound closure and moving the field from the management of chronic wounds towards resolving wounds.


Assuntos
Pró-Fármacos , Cicatrização , Humanos , Pró-Fármacos/farmacologia , Bandagens , Becaplermina/farmacologia , Inflamação
16.
Mol Cell Biochem ; 479(4): 951-961, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37256444

RESUMO

Dihydroartemisinin (DHA) inhibits restenosis following balloon angioplasty. However, data on the mechanisms of DHA activity in restenosis remains scant. Here, we investigated the role of circRNAs in mediating the inhibitory activity of DHA in neointimal formation. We used total RNA sequencing data to profile the expression of mRNA, circRNA and small RNA in sham, vascular balloon injury (VBI) and DHA-treated groups. CCK8 and EdU assays were employed to analyze cell proliferation, while qRT-PCR and Western blot were used to analyze the RNA or protein expression. In addition, we used RNA immunoprecipitation and luciferase reporter assay to assess the binding of circHSPA4 with miR-19a-5p. RNA sequencing demonstrated that circHSPA4 was upregulated in VBI. Treatment with DHA effectively suppressed the upregulation of the circHSPA4. In addition, analysis of platelet-derived growth family factor bb (PDGFbb)-induced HA-VSMCs showed upregulation of circHSPA4, which was associated with cell proliferation and differentiation. CircHSPA4 was shown to induce dedifferentiation and proliferation of smooth muscle cells. PDGFBB-induced overexpression of CircHSPA4 in HA-VSMCs led to suppression of miR-19a-5p, a phenomenon that was reversed by DHA, in concentration-dependent fashion. In addition, miR-19a-5p reduced the dedifferentiation and proliferation of the smooth muscle cells. Our data demonstrated that CircHSPA4 regulates proliferation and differentiation of smooth muscle cells. DHA and miR-19a-5p modulates CircHSPA4 and can be used as coated drugs on balloon catheter to improve the success rate of vascular remodeling.


Assuntos
Angioplastia com Balão , Artemisininas , MicroRNAs , Lesões do Sistema Vascular , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Células Cultivadas , Becaplermina/metabolismo , Becaplermina/farmacologia , Proliferação de Células/genética , Miócitos de Músculo Liso/metabolismo , Lesões do Sistema Vascular/metabolismo , Movimento Celular/genética
17.
Tissue Eng Part C Methods ; 30(1): 15-26, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756374

RESUMO

Insufficient vascularization is still a challenge that impedes bladder tissue engineering and results in unsatisfied smooth muscle regeneration. Since bladder regeneration is a complex articulated process, the aim of this study is to investigate whether combining multiple pathways by exploiting a combination of biomaterials, cells, and bioactive factors, contributes to the improvements of smooth muscle regeneration and vascularization in tissue-engineered bladder. Autologous endothelial progenitor cells (EPCs) and bladder smooth muscle cells (BSMCs) are cultured and incorporated into our previously prepared porcine bladder acellular matrix (BAM) for bladder augmentation in rabbits. Simultaneously, exogenous vascular endothelial growth factor (VEGF) and platelet-derived growth factor BB (PDGF-BB) mixed with Matrigel were injected around the implanted cells-BAM complex. In the results, compared with control rabbits received bladder augmentation with porcine BAM seeded with BSMCs, the experimental animals showed significantly improved smooth muscle regeneration and vascularization, along with more excellent functional recovery of tissue-engineered bladder, due to the additional combination of autologous EPCs and bioactive factors, including VEGF and PDGF-BB. Furthermore, cell tracking suggested that the seeded EPCs could be directly involved in neovascularization. Therefore, it may be an effective method to combine multiple pathways for tissue-engineering urinary bladder.


Assuntos
Células Progenitoras Endoteliais , Bexiga Urinária , Suínos , Coelhos , Animais , Bexiga Urinária/irrigação sanguínea , Bexiga Urinária/metabolismo , Células Progenitoras Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Becaplermina/farmacologia , Becaplermina/metabolismo , Engenharia Tecidual/métodos , Regeneração
18.
Acta Pharmacol Sin ; 45(1): 98-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726422

RESUMO

Restenosis after angioplasty is caused usually by neointima formation characterized by aberrant vascular smooth muscle cell (VSMC) dedifferentiation. Myeloid-derived growth factor (MYDGF), secreted from bone marrow-derived monocytes and macrophages, has been found to have cardioprotective effects. In this study we investigated the effect of MYDGF to postinjury neointimal formation and the underlying mechanisms. Rat carotid arteries balloon-injured model was established. We found that plasma MYDGF content and the level of MYDGF in injured arteries were significantly decreased after balloon injury. Local application of exogenous MYDGF (50 µg/mL) around the injured vessel during balloon injury markedly ameliorated the development of neointimal formation evidenced by relieving the narrow endovascular diameter, improving hemodynamics, and reducing collagen deposition. In addition, local application of MYDGF inhibited VSMC dedifferentiation, which was proved by reversing the elevated levels of osteopontin (OPN) protein and decreased levels of α-smooth muscle actin (α-SMA) in the left carotid arteries. We showed that PDGF-BB (30 ng/mL) stimulated VSMC proliferation, migration and dedifferentiation in vitro; pretreatment with MYDGF (50-200 ng/mL) concentration-dependently eliminated PDGF-BB-induced cell proliferation, migration and dedifferentiation. Molecular docking revealed that MYDGF had the potential to bind with sphingosine-1-phosphate receptor 2 (S1PR2), which was confirmed by SPR assay and Co-IP analysis. Pretreatment with CCG-1423 (Rho signaling inhibitor), JTE-013 (S1PR2 antagonist) or Ripasudil (ROCK inhibitor) circumvented the inhibitory effects of MYDGF on VSMC phenotypic switching through inhibiting S1PR2 or its downstream RhoA-actin monomers (G-actin) /actin filaments (F-actin)-MRTF-A signaling. In summary, this study proves that MYDGF relieves neointimal formation of carotid arteries in response to balloon injury in rats, and suppresses VSMC dedifferentiation induced by PDGF-BB via S1PR2-RhoA-G/F-actin-MRTF-A signaling pathway. In addition, our results provide evidence for cross talk between bone marrow and vasculature.


Assuntos
Actinas , Neointima , Ratos , Animais , Becaplermina/farmacologia , Neointima/tratamento farmacológico , Neointima/metabolismo , Actinas/metabolismo , Ratos Sprague-Dawley , Receptores de Esfingosina-1-Fosfato/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Músculo Liso Vascular , Simulação de Acoplamento Molecular , Proliferação de Células , Transdução de Sinais , Movimento Celular , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
19.
IUBMB Life ; 76(2): 88-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37596858

RESUMO

Our hospital admitted a patient who had difficulty in coagulation even after blood replacement, and the patient had abused caffeine sodium benzoate (CSB) for more than 20 years. Hence, we aimed to explore whether CSB may cause dysfunction in vascular endothelial cells and its possible mechanism. Low, medium, and high concentrations of serum of long-term CSB intake patients were used to treat HUVECs, with LPS as the positive control. MTT and CCK8 were performed to verify CSB's damaging effect on HUVECs. The expression of ET-1, ICAM-1, VCAM-1, and E-selectin were measured by ELISA. TUNEL assay and Matrigel tube formation assay were carried out to detect apoptosis and angiogenesis of HUVECs. Flow cytometry was applied to analyze cell cycles and expression of CD11b, PDGF, and ICAM-1. Expression of PDGF-BB and PCNA were examined by western blot. The activation of MAPK signaling pathway was detected by qRT-PCR and western blot. Intracellular Ca2+ density was detected by fluorescent probes. CCK8 assay showed high concentration of CSB inhibited cell viability. Cell proliferation and angiogenesis were inhibited by CSB. ET-1, ICAM-1, VCAM-1, and E-selectin upregulated in CSB groups. CSB enhanced apoptosis of HUVECs. CD11b, ICAM-1 increased and PDGF reduced in CSB groups. The expression level and phosphorylation level of MEK, ERK, JUN, and p38 in MAPK pathway elevated in CSB groups. The expression of PCNA and PDGF-BB was suppressed by CSB. Intracellular Ca2+ intensity was increased by CSB. Abuse of CSB injured HUVECs and caused coagulation disorders.


Assuntos
Selectina E , Molécula 1 de Adesão Intercelular , Humanos , Células Endoteliais da Veia Umbilical Humana , Células Cultivadas , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Selectina E/metabolismo , Benzoato de Sódio/metabolismo , Benzoato de Sódio/farmacologia , Becaplermina/farmacologia , Cafeína/metabolismo , Cafeína/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo
20.
Microvasc Res ; 151: 104609, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716411

RESUMO

OBJECTIVE: Vascular smooth muscle cell (VSMC) phenotypic switching is critical for normal vessel formation, vascular stability, and healthy brain aging. Phenotypic switching is regulated by mediators including platelet derived growth factor (PDGF)-BB, insulin-like growth factor (IGF-1), as well as transforming growth factor-ß (TGF-ß) and endothelin-1 (ET-1), but much about the role of these factors in microvascular VSMCs remains unclear. METHODS: We used primary rat microvascular VSMCs to explore PDGF-BB- and IGF-1-induced phenotypic switching. RESULTS: PDGF-BB induced an early proliferative response, followed by formation of polarized leader cells and rapid, directionally coordinated migration. In contrast, IGF-1 induced cell hypertrophy, and only a small degree of migration by unpolarized cells. TGF-ß and ET-1 selectively inhibit PDGF-BB-induced VSMC migration primarily by repressing migratory polarization and formation of leader cells. Contractile genes were downregulated by both growth factors, while other genes were differentially regulated by PDGF-BB and IGF-1. CONCLUSIONS: These studies indicate that PDGF-BB and IGF-1 stimulate different types of microvascular VSMC phenotypic switching characterized by different modes of cell migration. Our studies are consistent with a chronic vasoprotective role for IGF-1 in VSMCs in the microvasculature while PDGF is more involved in VSMC proliferation and migration in response to acute activities such as neovascularization. Better understanding of the nuances of the phenotypic switching induced by these growth factors is important for our understanding of a variety of microvascular diseases.


Assuntos
Fator de Crescimento Insulin-Like I , Ratos , Animais , Becaplermina/farmacologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Miócitos de Músculo Liso , Proliferação de Células , Movimento Celular , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA